

Through ultrasound data analysis Al solution for machine failure diagnosis

Watch Bat v1.0 .8748

MOVIC Lab

Introduction

Information

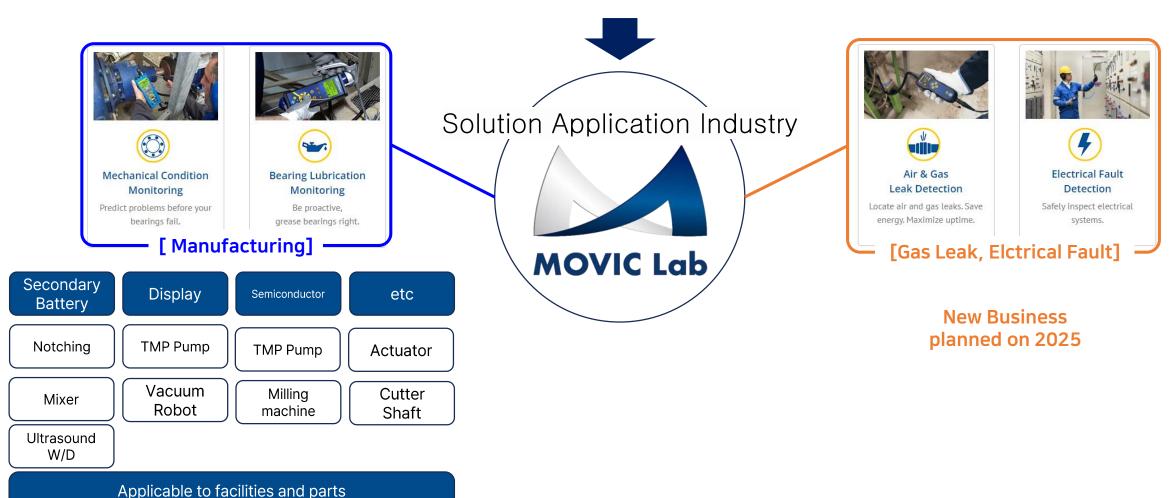
Member 17 Date of establishment 2017. 10. 24

Location - HQ: Incheon, Incheon Startup Park

Research center: Seoul, Yangje Al HUB

Mo bius 무한한 Vic tory 승리 Lab 연구 MOVIC Lab Co., Ltd. provides smart factory solutions based on Al technology.

In particular, the main service is Al solutions for detecting equipment abnormalities.

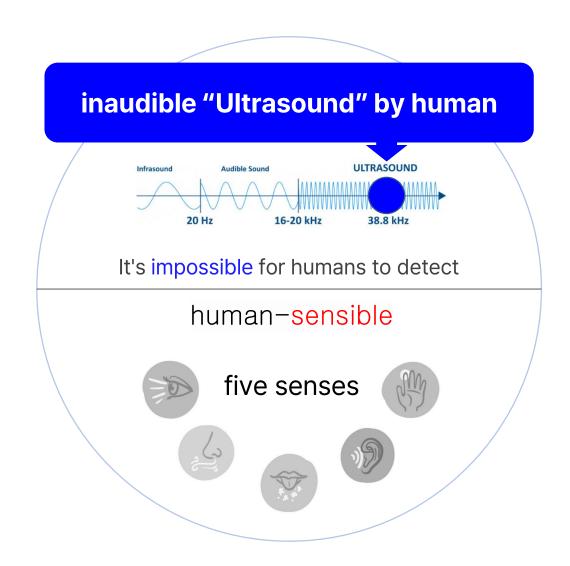

It has the advantage of providing time series data analysis and high-performance deep learning algorithms for various industrial signals (current, voltage, vibration, temperature, humidity, etc.).

Business field

where friction and conflict occur

Al-based Machine failure prediction

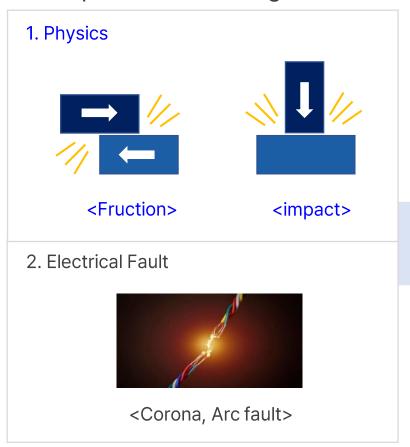
7/69


WHY Ultrasound?

- Inspiration from nature

'Dangers' perceived by animal hearing

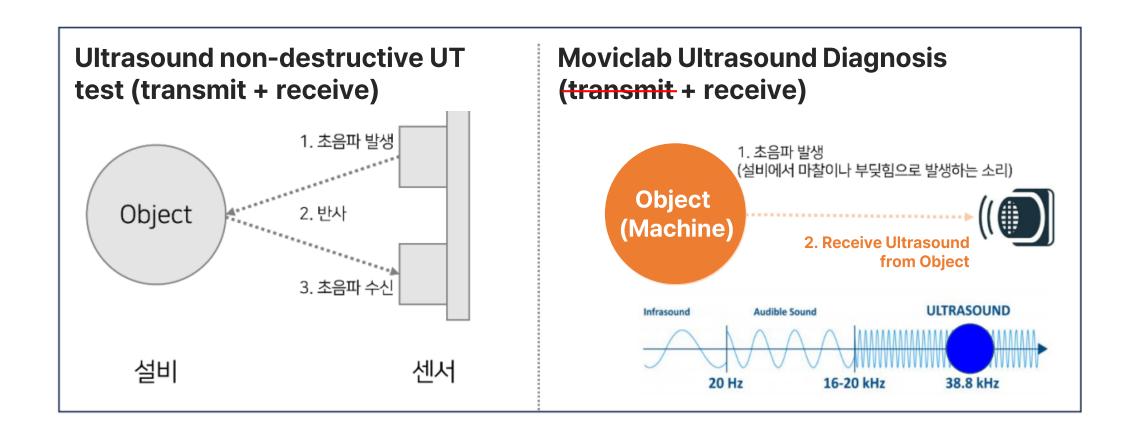
Dog: $\sim 44,000$ Hz CAT: $\sim 79,000$ Hz Human: $20 \sim 20,000$ Hz

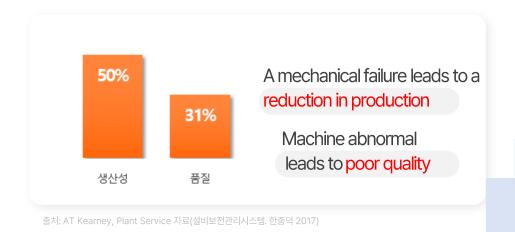


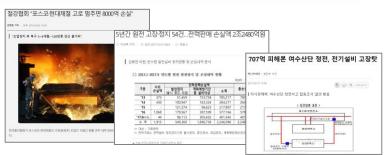
Ultrasound Diagnosis

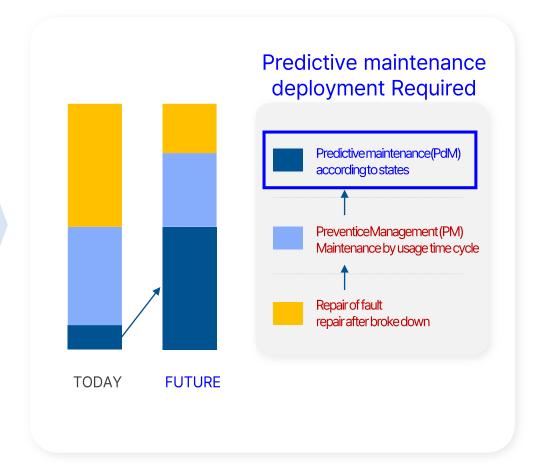
- Ultrasound occurs due to physical and electrical defects and is used to diagnose problems in various fields
 - < Principle of ultrasound generation >

< Apply to a wide range of fields >








Importance of manufacturing facility management

- Since the damage caused by mechanical failure is great, it is very important to take good care of the machine to prevent it
- It is essential to proactively detect signs of equipment failure in real time and 'predictive maintenance' before failure occurs

Failure of manufacturing machines results in astronomical economic losses

Problem

Limitations of past approaches

- It is difficult for humans to accurately diagnose the condition of the machine, and existing sensors are difficult to identify precursor symptoms

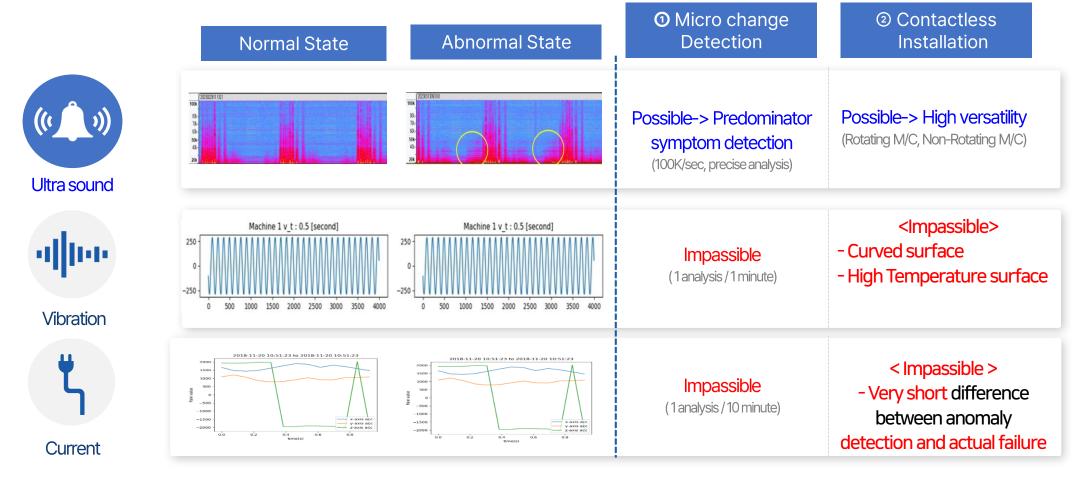
Depends on skilled person

- Lack of consistency
- It takes a long time to develop know-how
- Difficulty in assetization of knowledge

Vibration sensor

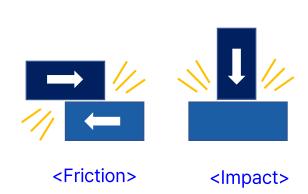
- Instal restriction by contact sensor
- Intermittent signals make it difficult to analyze

Electric current sensor


- Abnormal signal is generated just before the failure,
 limiting the precautionary preparation
- Overcompetitive risk due to low-cost sensors

New solution 'Ultrasound acoustic data'

- ① <u>High-precision data</u> analysis enables **predictive maintenance** and detection of precursor symptoms
- ② Contactless Installatin wide range of application



Solution

1. Identify precursor symptoms

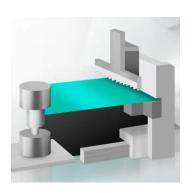
- Detects minute changes (preventive symptoms) before vibration occurs and performs predictive maintenance
- Reduce defective products and increase productivity

Metal Friction & impact -> 'Generate Ultrasound'

Solution

2. 'Non-Contact' Install

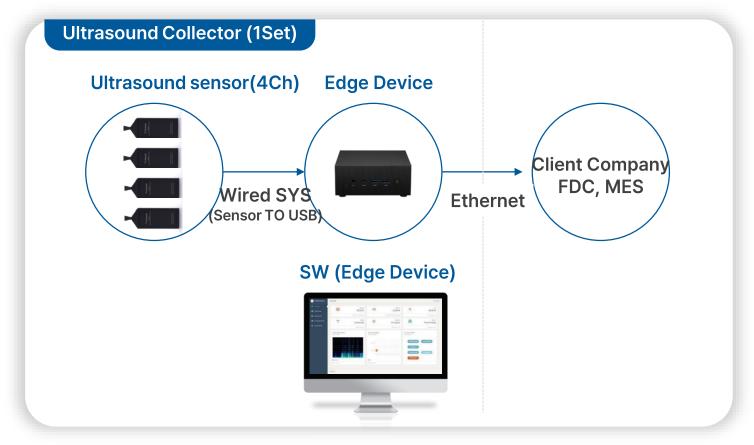
- Equipment that is difficult to install sensors such as vibration or current (equipment excluded from diagnosis)



<Hi temperature Surface>
 (over 70 degrees)

<Micro Machine>

<Linear motion Machine>


IV. Product overview

1. Product description

▶WatchBAT

Easy and convenient machine diagnosis is possible with the 'Al fault diagnosis service of manufacturing machines' based on ultrasound acoustic data from the machine

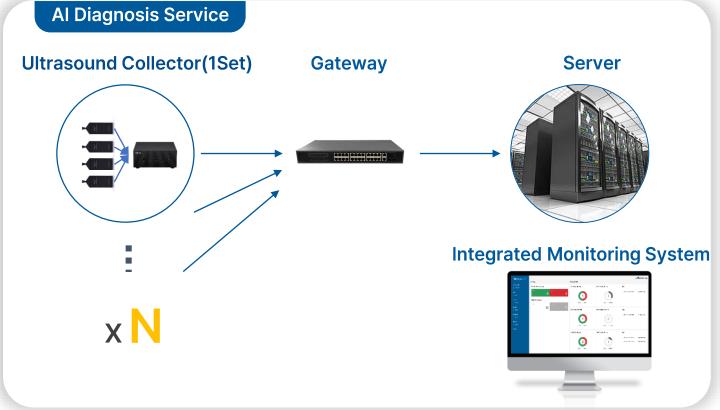
Sensing of Ultrasound

 Contactless installation on target point

Data Collection and Conversion

- Data collection and transfer (TCP/IP, Modbus)
- Include Allengine & MLOps

Data Analysis and Diagnostics


- Analysis RAW data
- Transfer result of analysis

1. Product description

▶WatchBAT

Easy and convenient machine diagnosis is possible with the 'Al fault diagnosis service of manufacturing machines' based on ultrasound acoustic data from the machine

Sensing of Ultrasound

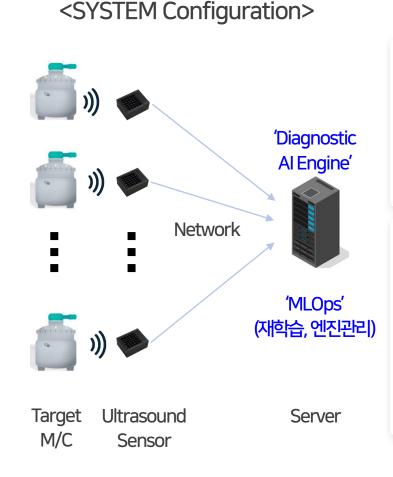
 Contactless installation on target point

Data Collection and Conversion

- Data collection and transfer (TCP/IP, Modbus)
- Include Allengine & MLOps

Data Analysis and Diagnostics

- Integrated management by machine/sensor
- Abnormal Detection Al Engine
- Classification Al Engine
- Remaining useful life Prediction AI E/G



Service

Mechanical fault diagnosis service

- Provide the factory's machine manager with a service to diagnose (Al engine) the condition of the machine, such as normal, abnormal operation, and timing of failure

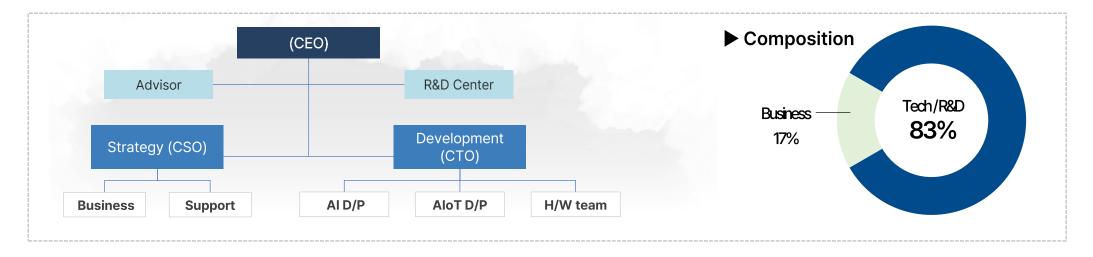
< Major Client > 삼성SDI Secondary LG 에너지솔루션 Battery 삼성디스플레이 SAMSUNG Display (LG디스플레이 Semi-**SK** enpulse conductor Car & ETC myunghwa

< Al Service >

The data that was accumulated up until then by learning patterns

- (2) Classification Service
- 3 Remaining Useful life Prediction Service

'Bearing Crack' 'Remaining 30%



A technology-oriented company that solves problems in manufacturing sites that have not been solved in the existing way with ultrasound waves and Al technology

It consists of digital signal processing experts (Al doctorate level), and the IT and R&D sectors account for more than 80% of the total workforce..

(Ultrasound Dignosis Expert(CEO), Advanced Development team(CTO), Business Strategy and Financial Planning(CSO))

Patent and certification

▶ Patent and certification

Own ability to develop the latest Al technologies and systems

Based on this, we are preparing technical barriers as well as protecting technical skills by securing intellectual property

Patents

	i desires							
순번	및 구분	일자	출원국	출원 및 등록번호	지식재산권(특허)명			
1	등록	2022.03.21	한국	10-2019-0169199	초음파 대역의 음향 신호를 수신하는 다채널 감지 센서를 구비한 설비 고장 예측 시스템			
2	등록	2022.01.11	한국	10-2020-0110164	센서모듈 장치			
3	등록	2021.11.05	한국	10-2019-0172349	사출 성형 설비의 고장 예측 시스템 및 방법			
4	등록	2022.06.17	독일	PCT/KR2019/017803	초음파 대역의 음향 신호를 이용한 설비 고장 예측 시스템 및 그 방법			
5	출원	2021.12.17	한국	10-2021 0181480	수신호 영상처리 방법 및 이에 기반한 장치 제어 방법			
6	출원	2021.12.07	US	17543,141	이상상태 탐지 모델을 생성하는 방법			
7	출원	2021.10.20	한국	PCT/KR2021/014759	센서의 임계치를 설정하는 방법			
8	출원	2021.10.20	한국	PCT/KR2021/014762	센서 시스템			
9	출원	2021.05.06	한국	PCT/KR2021/005656	이상상태 탐지 모델을 생성하는 방법			
10	출원	2020.10.30	한국	10-2020-0143910	센서 시스템			
11	출원	2020.10.28	한국	10-2020-0141605	이상상태 탐지 모델을 생성하는 방법			
12	출원	2020.10.20	한국	10-2020-0137804	센서의 임계치를 설정하는 방법			
13	출원	2020.08.26	US	PCT-2019-0042US	초음파 대역의 음향 신호를 이용한 설비 고장 예측 시스템 및 그 방법			
14	출원	2019.12.16	한국	PCT/KR2019/017803	초음파 대역의 음향 신호를 이용한 설비 고장 예측 시스템 및 그 방법			
15	출원	2019.11.18	한국	10-2019-0147610	초음파 대역의 음향 신호를 이용한 설비 고장 예측 시스템 및 그 방법			
16	출원	2019.10.28	한국	10-2019-0134701	설비 고장 예측 시스템 및 그 방법			

Thesis

순번	등재	진행상황	기관	논문명
1	2016	등재 완료	ASK	Embedded Anomaly Detection System With Ultrasound Sensors
2	2016	등재 완료	ASK	Frequency Characteristics Analysis of Ultrasound Sensing Embedded System
3	2016	등재 완료	ASK	A-Real-Time Acoustic Signal Streaming System using RTSP
4	2019	등재 완료	MDPI	Appliance Classification by Power Signal Analysis Based on Multi-Feature Combination Multi-Layer LSTM
5	2019	등재 완료	FCV	Squeeze and Excitation Deformable Mask-RCNN for Instance-Level Semantic Segmentation

Copyrights of SW

순번	등록번호	저작권명
1	C-2020-014909	지능형 화재 감지 알고리즘
2	C-2020-003756	화재 전조 증상 데이터 분석을 통한 지능형 화재 감지 알고리즘
3	C-2021-023376	초음파 음향신호 분석을 통한 설비 이상 작동 감지 알고리즘
4	C-2021-054348	초음파 음향신호 분석을 활용한 가열로 배기팬 작동 이상 감지 AI 솔루션
5	C-2021-054349	초음파 음향신호 분석을 활용한 가열로 배기팬 작동 이상 감지 AI 알고리즘
6	C-2022-048469	초정밀 리니어 액추에이터의 이상을 사전에 감지하는 Al솔루션
7	C-2022-048470	배터리 불량 검출을 위한 영상처리 Al솔루션
8	C-2022-048471	운동화 생산 공정(오븐)에서 운동화 내부의 온도를 검출하는 지능형 Al솔루션

Certification of Research Center

순번	등록번호
1	제 2020110608호

Thank you

Frequently asked

- 1. How do you deal with ambient "noise" generated in a factory environment?
- : Noise areas below 20 kHz that are heavily affected by external influences are excluded from the analysis.
- 2. What do you do with the external noise that comes from sound data over 20kHz?
- : Consider the optimal location for collecting ultrasound data at the target point.
- 3. What if there is still collected external noise?
- : Since the noise was generated during the process, it is recognized as an environmental variable and Al learned along with the target data.